10 research outputs found

    Flow-based reputation with uncertainty: Evidence-Based Subjective Logic

    Full text link
    The concept of reputation is widely used as a measure of trustworthiness based on ratings from members in a community. The adoption of reputation systems, however, relies on their ability to capture the actual trustworthiness of a target. Several reputation models for aggregating trust information have been proposed in the literature. The choice of model has an impact on the reliability of the aggregated trust information as well as on the procedure used to compute reputations. Two prominent models are flow-based reputation (e.g., EigenTrust, PageRank) and Subjective Logic based reputation. Flow-based models provide an automated method to aggregate trust information, but they are not able to express the level of uncertainty in the information. In contrast, Subjective Logic extends probabilistic models with an explicit notion of uncertainty, but the calculation of reputation depends on the structure of the trust network and often requires information to be discarded. These are severe drawbacks. In this work, we observe that the `opinion discounting' operation in Subjective Logic has a number of basic problems. We resolve these problems by providing a new discounting operator that describes the flow of evidence from one party to another. The adoption of our discounting rule results in a consistent Subjective Logic algebra that is entirely based on the handling of evidence. We show that the new algebra enables the construction of an automated reputation assessment procedure for arbitrary trust networks, where the calculation no longer depends on the structure of the network, and does not need to throw away any information. Thus, we obtain the best of both worlds: flow-based reputation and consistent handling of uncertainties

    Privacy-Preserving Verification of Clinical Research

    Get PDF
    We treat the problem of privacy-preserving statistics verification in clinical research. We show that given aggregated results from statistical calculations, we can verify their correctness efficiently, without revealing any of the private inputs used for the calculation. Our construction is based on the primitive of Secure Multi-Party Computation from Shamir's Secret Sharing. Basically, our setting involves three parties: a hospital, which owns the private inputs, a clinical researcher, who lawfully processes the sensitive data to produce an aggregated statistical result, and a third party (usually several verifiers) assigned to verify this result for reliability and transparency reasons. Our solution guarantees that these verifiers only learn about the aggregated results (and what can be inferred from those about the underlying private data) and nothing more. By taking advantage of the particular scenario at hand (where certain intermediate results, e.g., the mean over the dataset, are available in the clear) and utilizing secret sharing primitives, our approach turns out to be practically efficient, which we underpin by performing several experiments on real patient data. Our results show that the privacy-preserving verification of the most commonly used statistical operations in clinical research presents itself as an important use case, where the concept of secure multi-party computation becomes employable in practice

    Linear programs used for testing

    No full text
    Linear programs used for benchmarking results presented in section 4 Hardware/Software used: Text editor/spreadsheet Data format: Tab-separated values (*.teau files); text files (eq-*) Source: Randomly generated Number of samples: 6 Size per sample: 5x5 to 288x20

    Performance comparison of secure comparison protocols

    No full text
    Secure multiparty computation (SMC) has gained tremendous importance with the growth of the Internet and e-commerce, where mutually untrusted parties need to jointly compute a function of their private inputs. However, SMC protocols usually have very high computational complexities, rendering them practically unusable. In this paper, we tackle the problem of comparing two input values in a secure distributed fashion. We propose efficient secure comparison protocols for both the homomorphic encryption and secret sharing schemes. We also give experimental results to show their practical relevance

    Flow-based reputation with uncertainty : evidence-based subjective logic

    Get PDF
    Reputation is widely used in many domains, like electronic commerce, as a measure of trustworthiness based on ratings from members in a community. The adoption of reputation systems, however, relies on their ability to capture the actual trustworthiness of a target. Several reputation models have been proposed in the literature to aggregate trust information. The choice of the type of model has an impact on the reliability of aggregated trust information as well as on the procedure used to compute reputation. Two prominent reputation models are flow-based reputation (e.g. EigenTrust, PageRank) and Subjective Logic based reputation. Flow-based reputation models provide an automated method to aggregate all available trust information, but they are not able to express the level of uncertainty in the aggregated trust information. In contrast, Subjective Logic extends probabilistic models with an explicit notion of uncertainty, but the calculation of reputation depends on the structure of the trust network. In this work we propose a novel reputation model which offers the benefits of both flow-based reputation models and Subjective Logic. In particular, we revisit Subjective Logic and propose a new discounting operator based on the flow of evidence from one party to another. The adoption of our discounting operator results in a Subjective Logic system that is entirely centered on the handling of evidence. We show that this operator enables the construction of an automated reputation assessment procedure for arbitrary trust networks

    Secure Comparison Protocols in the Semi-Honest Model

    No full text

    Practical secure decision tree learning in a teletreatment application

    No full text
    In this paper we develop a range of practical cryptographic protocols for secure decision tree learning, a primary problem in privacy preserving data mining. We focus on particular variants of the well-known ID3 algorithm allowing a high level of security and performance at the same time. Our approach is basically to design special-purpose secure multiparty computations, hence privacy will be guaranteed as long as the honest parties form a sufficiently large quorum. Our main ID3 protocol will ensure that the entire database of transactions remains secret except for the information leaked from the decision tree output by the protocol. We instantiate the underlying ID3 algorithm such that the performance of the protocol is enhanced considerably, while at the same time limiting the information leakage from the decision tree. Concretely, we apply a threshold for the number of transactions below which the decision tree will consist of a single leaf—limiting information leakage. We base the choice of the best predicting attribute for the root of a decision tree on the Gini index rather than the well-known information gain based on Shannon entropy, and we develop a particularly efficient protocol for securely finding the attribute of highest Gini index. Moreover, we present advanced secure ID3 protocols, which generate the decision tree as a secret output, and which allow secure lookup of predictions (even hiding the transaction for which the prediction is made). In all cases, the resulting decision trees are of the same quality as commonly obtained for the ID3 algorithm. We have implemented our protocols in Python using VIFF, where the underlying protocols are based on Shamir secret sharing. Due to a judicious use of secret indexing and masking techniques, we are able to code the protocols in a recursive manner without any loss of efficiency. To demonstrate practical feasibility we apply the secure ID3 protocols to an automated health care system of a real-life rehabilitation organization
    corecore